Контакты/Адрес/Проезд
         Доставка и Оплата    Заказ по телефону/email    Помощь    Есть вопрос?    О компании  
 
+7 (495) 980-12-10
shop@lgbook.ru
10:00-18:00 пн-пт
 
  Поиск
Найти
 
Statistical digital signal processing and modeling, Hayes, Monson H.
  
Statistical digital signal processing and modeling

Автор: Hayes, Monson H.
Название:  Statistical digital signal processing and modeling   (Хейз. Статистическая обработка цифрового сигнала и моделирование)
Издательство: Wiley
Классификация:
ISBN: 0471594318
ISBN-13(EAN): 9780471594314
Обложка/Формат: Paperback
Страницы: 512
Вес: 1.076 кг.
Дата издания: 12.06.1996
Язык: ENG
Иллюстрации: Illustrations
Размер: 25.40 x 17.86 x 3.28 cm
Читательская аудитория: Postgraduate, research & scholarly
Рейтинг:
Поставляется из: Англии
Описание: This text explores the application of signal modelling to problems encountered in optimal filtering, spectrum estimation and adaptive filtering. Coverage is divided equally between the theory of statistical signal processing and the algorithms used to solve problems.

Наличие на складе: Есть (1 шт.)
Цена: 4095 р.

  
Добавить в корзину
Добавить в Мои желания


Автор: Candy
Название: Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods
ISBN: 0470180943 ISBN-13(EAN): 9780470180945
Издательство: Wiley
Цена: 2940 р.
Наличие на складе: Есть (1 шт.)
Описание: This book presents a unique viewpoint of signal processing from the Bayesian perspective in contrast to the pure statistical approach found in many textbooks. It features the next generation of processors that have recently been enabled with the advent of high speed/high throughput computers. The emphasis is on nonlinear/non-Gaussian problems, but classical techniques are included as special cases to enable the reader familiar with such methods to draw a parallel between the approaches. The common ground is the model sets. This text brings the reader from the classical methods of model-based signal processing including Kalman filtering for linear, linearized and approximate nonlinear processors as well as the recently developed unscented or sigma-point filters to the next generation of processors that will clearly dominate the future of model-based signal processing for years to come. Current applications (e.g. structures, tracking, equalization, biomedical) and simple examples to motivate the organization of the text are discussed. Examples are given to motivate all of the models and prepare the reader for further developments in subsequent chapters. In each case the processor along with accompanying simulations are discussed and applied to various data sets demonstrating the applicability and power of the Bayesian approach. The proposed text will be linked to the MATLAB (signal processing standard software) software package providing Notes as well as simple coding examples for illustrative purposes.


ООО "Логосфера " Тел:(495)980-12-10 www.lgbook.ru
- - - - - - - - - - - - - - - - - - - -